JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS

OBLIQUE IMPACT OF A SOLID BODY ON SOILS

L. Ya. Lyubin and A. 8, Povitskii

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No.

The interaction of a solid body with soils has applicationsin various
branches of engineering and has been studied by a number of authors.

A. Ya. Sagomonyan [1,2] studied the penetration of a sharp
axisymmetric body into soils. B. I. Didukh [3] made use of Kh, A.
Rakhmatulin's theory of unloading waves to solve shock compaction
of loess soils with a plane compacter. An approximate solution of the
same problem in elementary functions has been given by S. S,
Grigoryan [4],

This paper examines the oblique impact on soils of a solid body
which makes a parabolic (plane problem) or paraboloidal (axisymmetric
body) impression in the surface of soils with the capability of signi-
ficantly changing their density under compaction.

Sections 1-3 deal with the impact of a solid body on soils that
constitute an elastoplastic medium with a piecewise-linear law of
uniaxial deformation with an interval where o = const.

1, A solid body with a sufficiently sloping profile
(maximum angle between plane tangent to surface of
body interacting with the soil and undeformed soil
surface ¢4 ~ ¢; €; is a small parameter), on impact
with the soil, has the components of initial velocity W
and U, (Fig. 1).

It is assumed that the body was not rotating prior
to impact and that during its penetration into the soil
its angular acceleration is negligibly small, since the
corresponding moment of inertia is sufficiently large.

We make the approximate assumption that the
unsteady motion of the soil takes place mainly in one
direction, or, more precisely that the components of
the velocity vector are of the order.

u~v~eW,, w~W, (1.1)

(it is assumed that the coefficient of friction is f ~ g?),
while the derivatives of the different functions charac-
terizing the soil compaction process are given by the
estimates

3 4 9
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5~ 5 (1.2)

Then as S. S. Grigoryan [5] has shown, one can
derive a system of equations of one-dimensional motion
along the z axis from the equations describing soil
movement, by neglecting quantities O(e?).

The corresponding approximate equations of conti~
nuity and motion have the form

85,4

i (1.3)
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(the subscripts zz on the stress components will in the
future be omitted: ogz = o).

The soil can be in only two states; elastic OA or
packed, incompressible B;BC (Fig. 2). The transition
to the second state takes place abruptly at o= —pg (¢
is the relative deformation). Unloading in the compacted
soil takes place without alteration of volume CBB; .
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Since the soil model in question is a particular case
of the general model studied in {5], we can make use of
equations [1.3]. Taking into account the incompres-
sibility of the soil in the state characterized by points
of the straight line B,,BC we obtain equations which
describe the motion along the z axis in the zone of
compacted soil:

dw

—a—z—zo, pl—a7=—67. (14)

Fig. 1

It is obvious that if the component of the initial
velocity W,, normal to the soil surface, is sufficiently
large, by analogy with the case of an explosion in
elastoplastic soil investigated by N. V. Zvolinskii [6],
the soil deformation process can be divided into five
stages.

1) A compaction shock wave propagates through the undisturbed
medium in the direction of the z axis (Fig. 1).

2) Under the left "stern” end of the penetrating body (in the neigh-
borhood of point A) the shock wave velocity is first equal to and then
less than cy, the propagation velocity of the longitudinal elastic
waves, The shock wave begins to emit an elastic wave; soil compaction
continues; the right boundary of the region of emission of the elastic
wave propagates to the right,

3) For a certain decrease in the normal velocity component, soil
compaction ceases under the stern end of the body, i.e., an elastic
wave will be propagated through the undisturbed mediom, followed
by the compacted zone; the boundary is a contact discontinuity.

4) Subsequent decrease in the normal velocity component leads to
separation of the soil from the stern part of the body surface (if the
initial value of the drift velocity U, is commensyrable with the initial
value of the normal component of velocity Wg).

5) Since unloading of the compacted soil takes place without
alteration in volume, at the same time as the body comes to rest, in
the case of direct impact, the compacted zone will stop, and from it
there will separate the trailing front of the elastic wave, In the case
of oblique impact a ricocher is possible.

In the elastic zone, as is customary, we ignore the
convection part of the aceeleration (8w/8t = dw/dt) and
assume that the motion, as in the zone of compacted
soil, is practically one-dimensional. Then, in the
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plane wave between the stress gy(0;5) and the rate of

elastic displacement w, the relation
O, = — ool 1.5)

holds, where p, is the initial soil density, c, is the
propagation velocity of the longitudinal waves.

Fig. 2

Below, we will confine ourselves to a study of the
more interesting second and third stages, i.e., we
will assume that W, is moderate, and that during the
whole period of its existence the entire surface of the
shock wave emits an elastic wave.

Then boundary conditions can be written in the fol-
lowing form (see Fig. 1, where AD is the region of
elastic strains, DC is the contact discontinuity front,
and CB is the shock wave): at the shock wave

— P . P\ 3z,
,w‘—-mwg-i-( pl)at’

(1.6)
—oi= ot B (1 B (e

at the contact discontinuity front

0z,
W, = Wy == at !

Gy == Jg.

Here oy and w; correspond to compaction zones 1
and 2; o, and w, to the elastic zone 3; and p, is the
density of the compacted soil.

The system considered can only be realized for the
additional condition at the shock wave [6—8]

o= —p. (1.7)

The boundary conditions on the body surface for the
plane problem and for an axisymmetric body have,
respectively, the forms

w1=H.‘_'tl.’Z_Z'r

w1=H’+l'—3§—coscp. (1.8)

Here the dot denotes differentiation with respect to
time, H and | are coordinates of the apex M of the
body relative to a fixed point on the soil surface, ¢ is
the angle in the horizontal plane measured from the x
axis; h = h(g) is the body contour equation, the upper
(lower) signs corresponding to points on the right (left)
of the axis of symmetry (Fig. 1).

Beginning at a definite moment of time the contact
surface between body and soil will be made up of three
regions: a right region BN, under which compaction.
of the soil continues; a middle region ND, under which
compaction has ceased, and a "stern" region DA under
which there is no compacted soil.

Since, in view of relations (1.5) and (1.7), there is
a zone with constant parameters g = —pg, Wy = Wg, Wg =
= ps/(poc.\)) between the shock front and the leading
front of the elastic wave, soil packing takes place
under that portion of the contact surface where w; ~
>wg. Thus, the boundary between the first and second
regions is determined by the condition

W = W, (1.9)

The ratio H*/1 - decreases monotonically. In conse-
quence, projection of the boundary between the second
and third regions onto the undeformed soil surface
does not change in the stationary coordinate system in
the case of the plane problem, and only increases with
penetration in the case of an axisymmetric body (this
projection consists of points at which the soil particles
attain a velocity w = wg at the moment of contact with
the body).

Solving Eqs. (1.4) and (1.5) in conjunction with the
boundary conditions (1.6) (1.7) and (1.8), we obtain
the stress distribution g(ozy) and A, the thickness of
the zone of compacted soil along the surface of the
body in regions 1, 2, and 3, respectively. Thus, for
the plane problem

—a® = p,+ L@, a0) (H" 2 ' — T 1) +

+(H + j_’;r—ws)“], — o = poco (H + -5- I+

Bt o (e S s 1) -

CA® (@, ao) =IL£%°‘), A® (@, @) =0,
7@, a0) =h(ag) — h(a)—w, [t (a) —t (a')],

a’ = a+ [l (a0) —1(a’)l. (1.10)

Here t(a) is the time taken for the width of the
impression to increase from 0 to 2a; 2q! represents
the width of the impression at the moment when the
body touched the soil at point E; the superscript ° is
used to denote parameters corresponding to the moment
of passage of the projection on the horizontal plane of
the boundary between zones 1 and 2 through a point at
a distance L = [, ~ a from the fixed point D.

Thus, the thickness of the compacted soil zone
A < [h{a) - ha)] ¢~1 and, consequently, due to the soil's
ability substantially to change its density under de-
formation (£ -~ 1), the compacted zone is a thin layer.
This means that the ratio of I, in the direction of the
z axis to Ixy in directions perpendicular to the z axis
is small, z(1, ~ Elxy), which leads to estimates (1.1)
and (1.2) [5]. A similar explanation can be found for
the one-dimensional nature of soil motion in the elastic
zone during the initial stage of penetration, when zone
3 (Fig. 1) is comparatively narrow. With further
penetration one-dimensionality is assumed due to
special properties of the soil. It should be noted, more-
over, that at the most interesting stage, when the ratio
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ws/H" is small, the influence of the elastic strains on
the process is a second-order effect.

The equations of motion of a penetrating body with
mass m and the initial conditions are written in the
form

mH"” = b\ sda,

‘J,c/:'g

Gy o ag
. dh dh
ml =bSc7a—da—b S cﬁda+ijcda, (1.11)

0 ~o —Co

H.ZWQ, leo for H=0. (112)

Here b is the width of the penetrating hody.

2. Let h(a) = ¢°/2R. Since only shallow penetration
depths H are involved, it can be assumed that this
contour is approximately a circie of radius R. We
select the ratio wg/W, as the small parameter & and
transform to dimensionless quantities

= W,W,
pe = HpWe?

= W,U, a = aa,,
t = efta, /W,
. = 2eER, f = e%f,.

b = Ba,,

B = 4ea,’0,/m,

Since the penetrating surface slopes, it can be
taken that ¢ ~ 7 ~ 1. The most interesting stage of
the motion is when the vertical component H' of the
penetration velocity is commensurable with its initial
value W; (W ~ 1). It is assumed that the initial values
of the velocity components W, and U; are of the same
order and, hence, that U ~ 1, It is also assumed that
the body width is of same order as the characteristic
dimension in the direction of the x axis (3 ~ 1), while
the additional mass of the soil is commensurable with
the body mass (u ~ 1).

Then the equations of motion (1.11) for the period
prior to the appearance of the contact discontinuity
zone and the initial conditions (1.12) can be written in
the form

[1 + % Bu (—i— o’ — eaoT + & ia rda)]W %ZV-; +
0

+ Bpag? (W2 —2eW) 4+ Butlla =0,
== Chipe oy U =0, (2.])
W='1, U=U0/Wo for ay=0. . (2_2)

We will seek a solution for (2.1) in the form of a
power series in the small parameter ¢, i.e.,

W=W,+eW,+..., U=U +eU,+ ...,
=T, +et;+ ..., (2.3)

Substituting (2.3) in (2.1), we get the first-approxi-
mation equations

TEL 4 B, + Bpo’8ll =0,

1
{1 + = BP“03>
aUy
doyg

=0, W,--1,

Ugy= Ug/Wy  for ay=0. 2.4)

The second-approximation equations have the form

dr, 22 dWa

aa, = NI + P12 (10) Wy —@a {2g) = 0,
j{: =0, Wo=0, Upy=0, 13=0 for ag=0;
3uae? 1 dw

Q2 (o) = 23u30 1 Pea (00} =

1+ s Bpag® W, dug
dap

dw 2| 2
= o v [ ) @] G L @9)
¢

&
)
L

.

S I

Fig. 3

The third-approximation equation is

AU,

dW1
da, _/l

+ 5 BB, = 0,

U3=O

for ag=0. (2.6)

The solutions of Egs. (2.4), (2.5) and (2.6) for the
initial conditions mentioned are found in quadratures.
For (2.4) we have

=V (1 +E0) (1 + s Bpag®) 2 —EII,
Uy = Uy W,. 2.7

For (2.5)

2I (8,0)

ahEge ) AT 2O R,
] 3 p 3

2= Wil + oy ¢

L
H L

are

160y = | . Otedn
( ) OS V(G——2u)1——m12)m1'/'

(6, 0) = (VE+ 5 ) (h G o)=L, ol

J2(8, @) = —’”/—6:;6_‘—"3‘1——1+(V5+T}5r>><
X [arcsin( ViiIé u,—arcsm V:T? }}.

o 1/.id
0

¢ Io (5, ©) doy

- 1(6 ) dwy
T (8 0) = § T+ o)

Io (8, ©) = \——./—,—. @.8)

0

For (2.6)

Us=— (1 — W) — ¥ EBua Uy /| W,. (2.9}
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The components of the force acting on the penetrating
body are

1 W eBu - \ dW,
{za s Brad) [(“"“"S e (o) dat)
[}

T ZeE aen,
+dag? (1 —W,)] clad! }W1 ,
1 w , AW 8 U
Pom g g T (1 S — 58 Bt 55 ) Wi (2.10)
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Fig. 4

Compaction of the soil under the stern end of the
body ceases when the soil velocity in the neighborhood
of point A equals wg or [see(1.8})] when the dimension-
less width of the impression equals

W—¢

2o = 7 -

(2.11)
From this moment and up to the commencement of

separation of the body from the soil at the stern end,

its motion will be described by the system of equations

{t+ 2[00 + o) (02— or) — 20

A—aty o
n

4§ nraa—e ([ ant o el

T T

4 Byl -Zdl) ol e B [EL (90 — ) a:Dz— 2% (dyo—i-th)%] W+

+ Biweato (tg? — o) W — Pueteo (a0’ Sl WU

BpEHay (a0 4- 1) ¢ (a® —ar®)?
Bl o, w8y (o [tad ey

Ay A-ay

— o5t —a)T— 2080 | fo(@)dot 268  afo(@)

ay

+ 28% (§ooc17(oc) da—~Son‘ (o) d&)]—— ezfl}»W +

[}

L Ppelou(a® —a) W2 B (2e% e ap (A — o) W 4+
2 2

-+ 2BueELao gzos-al/s)_U_ +

4Buertay (o + 0r®) WU
+ 3

2 dv 2@0

Buetiay (og® —agf) IT r o 0 il
* o - =0 =y & W

2a0U l
= =

g T W a, b —a)=f(a® ). (2.12)

The nonlinear system of Egs. (2.12) is solved by
numerical methods. The initial values of W, U and 7
are found from the calculation of the preceding stage.
The quantity A equals zero at the commencement of
stage considered. The dimensionless coordinate o of
the zone boundary is found from (2.11),

3, Oblique impact of an axisymmetric body can be
examined in the same way. The first stage of motion
(up to cessation of soil compaction at the "stern" end)
for h = a°/2R is described by the equations

pa
: d
— eyt + a&r(xl)dxl}w% +

0

[1 + [é‘ xE

+ Wy (W2 — 2eW) + uBIIX = 0,

— et + 2B =0, o=
W=1, Z—V%:" T=0 ar yx=0.
. H _ nEPolL?
(X =g T T ) @.1)

Substituting (2.3) in (3.1) and assuming that for the
dimensionless quantities we have estimates similar to
those in 2, we obtain:
first~approximation equations

(1+ 22w, S 4 W? 4 It =0,

al
dx
second-approximation equations

=0 W1——1 U1:U0/W0 at XZO, (3.2)

d
dr L I, )Wt W (1) =0,

4 _ g

d’)( Ty = 0, Wg = 0,

{]2 =0 at =0,
2% aw,

T T Y=

\Fm (X) =

=“’_’1_+‘L1,‘/ITMI_XT{[X7 Sf(xl)dxl]_-—zx} (3.3)

third-approximation equations

dUs

—h SR o =0, Us=0 & x=0. (3.4)

The equations of the successive approximations are
solved in quadratures,

14-£0
(1 4 Yapa?y?

U,

W1: [ ‘—EHT/’, v, :DTO’

13(61 (D) U __O
V—Z—}rl » 2 L]

)= V5§

¢

T =

_ (4oyde
VG 2(1)1—(1)1)(01

Wy=—Qyu(N)exp[— D (X)], Us=—fH(1—Wi)—

— LD (1) = { Wia () s, @ () =
[

%
= S‘Fn (%1) exp (D45 (X1) dxl]dXI)- (3.5)
H
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The components of the force acting on the pene-
trating body are

X

O e | SN AL A L
]

eka, | 1 -4 Ygpax?

-2t — W,)]-{-%}Wl P =

(3.6)

dW,
8 v, 42— i)
The compaction of the soil under the stern part of
the body ceases when the dimensionless depth of the
impression y becomes equal to the quantity

— g\
%= (vgggUe) :
The subsequent imbedding of the body in the soil
may be treated in the same way as for the plane prob-
lem. Direct impact (Uy = 0) may be similarly consid-
ered. In this case consideration of the third stage of
the process is considerably simplified, since compac-
tion of the soil ceases simultaneously under the entire
contact surface.

(3.7)

It should be noted that under certain conditions the picture of the

process may be modified; a cavity may form near the apex of the body.

The condition for initiation of separation is that stresses o be zero at
the corresponding points of the contact surface. Calculations show that
for direct impact in the first approximation soil separation will take
place on that portion of the surface which has penetrated the soil to a
depth H > Hy = [£m/(mpR)] /2.

The soil model described will obviously be the limiting case of an
elastoplastic medium with a piecewise-linear law of uniaxial deforma-
tion (Fig, 8) (it is assumed that unloading from the states represented
by points on the section AB takes place without change of volume).

S. S. Grigoryan [4] used another particular case of this model, where
the relative soil deformation does not reach the limiting value cor-
responding to point B.

4, For a sufficiently high initial body velocity, the
soil deformation process will, in the case, proceed
as follows.

1) The shock wave compacting the soil to the limiting incompres-
sibile state corresponding the points on BC propagates through the
undisturbed medium in the direction of the z axis (Fig, 1).

2) Under the "stern” end of the body the shock wave velocity first
becomes equal to, and then less than the velocity ¢ = E/pol/l .
(E is Yong's modulus; section OA in Fig. 3). The shock wave begins
toemit an elastic wave; compaction of the soil to the limiting state
continues, and the right boundary of the region of elastic wave emission
moves to the right.

3) With further decrease in the velocity component normal to the
soil surface the shock wave velocity under the stern end becomes
equal to ¢; = E;/p,/? (E is the modulus of plasticity); compaction
of the soil to the limiting incompressible state ceases; and behind the
elastic wave, moving at velocity cg through the region with constant
parameters (o = -pg, W = Wg), the plastic wave will propagate at
velocity cy.

It is obvious that if AB slopes sufficiently and ¢; < wg = pg/ (pgco
the final stage will not take place, and the soil deformation process
will proceed according to the scheme of §1.

We shall examine the third stage of motion, i.e.,
we shall assume that the initial velocity component

W; is sufficiently small and that limiting compaction
of the soil to the incompressible state does not take
place. As before, we regard the soil motion as one-
dimensional, due, for example, to its high porosity

[3, 4] (powdery soil). Then it can be shown that distri-
bution of stress o(cyzy) over the surface of an axisym-
metric body will be

—6(a, @, ag) = pocs [t (a0) —t (a')] [H" 41" % €08 P —
(@ oot Bt ]+

+ potpoe(H + 15 cosg—0ico), £(a) =t (a)+

248 11 (a5) — 1 (a)] cos @ + O (e%a, | W),

a = Ve*+ (Al + 2Alacos g =~a -+ Alcos g,

Al =1(ag)—1(a’) =l (a) — 1 (a) + O (e%a,). (4.1)
Here —o = pg =
A).
Let h = a®/2R. As before, for oblique impact, we
limit ourselves to the case of shallow penetration H.
We introduce the as yet undetermined small param-
eter € and transform to dimensionless quantities

E6g is the elastic limit (Fig. 3, point

a=oaa,, a,=2¢R, H=WW, I'=W/U,
14,0 polIW 2 £a,T
P2 = me s = P , b= W, ’
W W,
f: f,sz, Cp = Q)Ea—n , Pl ZZ% 0'

TFor powdery soils, such as loess [3],

E = 2.1407 kgf/m?,
0, = 0.003, p,=1

¢,2 [ ¢g2 = 0.05,
5.102 kgf-secz/m

and hence, for example for & ~ 0.3, Wy, ~ 10 m/sec, it
may be taken that & ~ ¢; ~ II ~ 1, Repeating the argu-
ments of Section 2, we also obtain the estimates a ~
~W~TU~ 1T~ ly~1, Then the equations of motion
may be written in the form

asduil

[t+ ugclg | W G W

+ 26y, (1-%) Ha,® =0,

I — e[ 2l S A AL

U 1 (ctg) — 1 (@) dt 20
2 5 — .. ]
+ 28pal10t 7 0, A s 7

Q&

(h~1)

W =1, (4.2)

U
U:W—Z, T=0 for ag=0,
As in §2, we will seek a solution for Eq. (4.2) in
the form of a series in powers of the small parameter
£. Substituting (2.3) in (4.2), we obtain the first-ap-
proximation equation
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ag
do au
o i} B 4 e, o
Py . .
=1, Uy=Uo/W, for ay—0. 4.3)

We select the small parameter € in such a way that
My £y = 2. Then

W, = exp (—a., Uy=U, | W, (4.4)

{for an arbitrary choice of & we have W = exp(—kao),

k = p9¢,/2).
The second-approximation equations are

Tk + had? exp (— 2aqf)x

X ;S 408 exp (204) W (a) dow -+ T100° == 0,

0

dU d )
A A
W2=0, U3=0., 't‘,=0 fOI’ao= Q. (4:.5)

The solution of equations (4.5) has the form

Wy=— 22— @2+ a)exp(—a)l, Us=0,

Ty = 28. o exp (af) da. (4.6)

0

The third-approximation equations are

Ly

= {2;&2&1 -;f-VLS [ (o) —7a ()] 50 da 4 £} T2 —
— oty Do e W“‘z%) 0, Ug=0 for go=0. (4.7)
Thus
Us —
4& dy exp(—-—a,‘)[ S [Ta (2tg) —
0
— 1y ()] T2 dTa (d) atda -t
oy
+ b Jouf— 2ua8s 5% S whexp(at)da,  (4.8)
0

The components of the force acting on the penetrating
body are

mWa.
Py e ZEa,;o‘
x [4%” exp (— 2a%) + gexp ag* (4°‘°8W” - %)]V
__ emWq
Px - 2“.“: X

{4ao' exp (—‘,240‘) [2p,c1 S [%2 (o) — 7a (&)] X

X “‘-—7&--(“.) da +/ 1] + 2l ;7:‘ “05} . (4.9)

Similar expressions are obtained for the plane prob-
lem,

5. The additional mass of the soil can be ignored when dealing
with the problem of direct impact of a heavy (i ~ ) cylindrical
body with a sloping biunt end on the soil considered in Section 4. In
this case the soil reaction on the body will be uniquely determined by
the rate of penetration. Figure 4 gives the dependence of g, the con-
tact surface stress, on V the rate of penetration.

— o= peei¥ on 04
— 6= p,+ peeyV on 4B
_6-_-ps-g-3§°-(v—ws)= on BC
._.q=P—£-V’ Jon €D
,——p—s-, wy =Gy + (4 — §w,
Pol
wy = Eco §—1—£%

Here p is the density of the fully compacted soil (B;BC in Fig. 3).

It should be noted that with decrease in the modulus of plasticity
E, the velocity w; approaches wg. When w, = wy, there will be no
section AB (Fig. 4).

The author thanks N, V, Zvolinskii for his criticism and valuable
suggestions,
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